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A rather detailed report is presented on the present status of the algebraic

approach to the phase problem in the case of an ideal crystal in order to make

clear that some points must still be proven for it to apply to neutron scattering.

To make this extension, the most important results that were previously

obtained in the case of X-ray scattering are derived again by a different

procedure. By so doing, the three-dimensional case is treated explicitly, the

polynomial equations in a single variable whose roots determine the positions of

the scattering centres are explicitly reported and the procedure is shown to

generalize to neutron scattering, overcoming the difficulty related to the non-

positivity of the scattering density. In this way, it is fully proven that the

atomicity assumption removes the phase ambiguity in the sense that the full

diffraction pattern of an ideal crystal can uniquely be reconstructed from a

suitable finite portion of it in both X-ray and neutron scattering. The procedures

able to isolate these portions that contain the pattern’s full information are also

given.

1. Introduction

The main problem of crystallography consists in determining

the electron or the scattering-length density of a crystal

knowing its X-ray or neutron diffraction pattern as well as its

chemical composition. The problem is brought to its essence

by assuming that the atoms are point-like objects, which is

known as the atomicity assumption. Under this assumption,

the unknown quantities to be extracted from scattering data

are the positions of the atoms present in the unit cell. The

number of atoms being finite, the number of unknown quan-

tities that determine the scattering pattern is also finite.

Consequently, on the basis of implicit function theory, the

knowledge of a (sufficiently large) portion of the diffraction

pattern should yield a number of equations sufficient to

determine the positions of the atoms within the unit cell (see

e.g. Hauptman & Karle, 1950). One concludes that the phase

problem is solvable under the atomicity assumption and that

the full diffraction pattern can be reconstructed from a finite

portion of it (Sayre, 2002). For this claim to be considered a

mathematical statement, it is necessary: to know a procedure

able to single out from the observed pattern a set of equations

having a Jacobian different from zero; to find all the different

solutions from the isolated set of equations; and to show that

each of these solutions reproduces the full diffraction pattern.

As these three points have not been fully clarified, the

aforesaid claim can only be considered a conjecture. In fact,

this conjecture is so widely shared by the crystallographic

community as to give the impression that it is a well estab-

lished mathematical result. In reality, the full proof of the

conjecture was recently obtained by Cervellino & Ciccariello

(1996, 2001) for the case of X-ray scattering only (these two

papers will be referred to as I and II in the following).

The aim of this paper is to generalize the proof to the case

of neutron scattering. The proof is based on the so-called

algebraic approach put forth by Ott (1927) a long time ago.

The plan of the paper is as follows. The next section (x2)

reviews Ott’s algebraic approach and its generalization,

obtained in the late seventies, on the basis of the vectorial

space formalism of Goedkoop (1950). By so doing, we point

out what must still be proven for the conjecture to become a

mathematical property. Since the analysis of these points look

rather mathematical, at least to practical crystallographers, it

is reported in the companion deposited part of this paper.1

Hence in the last section (x3), we simply detail our results and

draw our final conclusions calling attention to one point that,

in our opinion, deserves further investigation because it could

be practically relevant. Concerning the deposited part, in its

first section (x1), we report a proof of the conjecture different

from that given in papers I and II. This proof explicitly deals

with the three-dimensional case and gives the polynomial

equations in a single variable to be solved in order to deter-

mine the coordinates of the scattering centres. In x2, we

generalize the proof to the case of neutron scattering. This

‡ On leave from Istituto di Cristallografia (CNR-IC), Via Amendola 122/O,
I-70126 Bari, Italy.

1 Supplementary data for this paper, including Appendices A and B, are
available from the IUCr electronic archives (Reference: AU0349). Services for
accessing these data are described at the back of the journal.



generalization requires that some of the results reported in I

and II are obtained under weaker assumptions. These tech-

nical points are left to deposited Appendices A and B.

2. The algebraic approach

In the case of ideal crystals (i.e. infinitely large crystals made

up of atoms forming, in real space, a mathematical lattice

denoted as Z3), the observed scattering intensities Ih, leaving

aside some normalization factors, are simply equal to the

square moduli of the so-called structure factors Fh. These are

the Fourier transform values (in appropriate units) of the unit-

cell scattering density (i.e. the electron or the scattering-length

density depending on whether one respectively considers

X-ray or neutron scattering), associated with a set of scattering

vectors h that form a lattice in reciprocal space still denoted by

Z
3. The atomicity assumption states that the atoms can be

treated as point-like objects. Hence, Fh takes the simple

expression

Fh ¼
PN

j¼1

ẐZj expði2�h � rjÞ; ð1Þ

where N is the number of atoms in the unit cell and ẐZ j denotes

the electron number or the scattering length of the jth atom

located at the point having position vector rj. The knowledge

of the chemical composition of the sample ensures that N and

the ẐZjs are known. On the contrary, the knowledge of the Fh

values requires the knowledge of r1; . . . ; rN. Equation (1)

specifies however the dependence of Fh on the atomic position

vectors so that its left hand side (l.h.s.) should more comple-

tely be written as Fhðx1; y1; z1; . . . ; xN; yN; zNÞ. Assume for a

moment one knows the value of the structure factor (s.f.)

relevant to a particular reflection h. Then, one has the complex

equation

Fhðx1; y1; z1; . . . ; xN; yN; zNÞ ¼ Fh: ð2Þ

This corresponds to two real equations that, on the basis of

implicit function theory, determine two of the variables

x1; . . . ; zN in terms of the remaining ones. Hence, if one knows

the s.f. values relevant to m different reflections and

m � 3N=2, in principle all the coordinates of the atomic

positions could be determined [Karle & Hauptman (1950)

and, more recently, Fischer et al. (2005)]. For this to happen, it

is necessary that the equations considered in (2) be func-

tionally independent. Therefore, the m considered reflections

must be properly chosen. Moreover, one must also find an

algorithm able to find the solution because the implicit func-

tion theory only gives the conditions for the existence of a

local solution.

2.1. Ott’s formulation

Ott’s (1927) algebraic approach gives a procedure able to

overcome the second and, to some extent, the first of the

aforesaid difficulties. The main feature of Ott’s analysis can

more simply be presented by restricting ourselves to the one-

dimensional case. Thus, we shall consider the reflections

h ¼ h00 that lie on axis a� of reciprocal space. The associated

s.f.s read Fh ¼ Fh ¼
PN

j¼1 ẐZj expði2�hxjÞ. For greater simpli-

city, we also assume that x1 6¼ x2 6¼ . . . 6¼ xN . After putting

�j � expði2�xjÞ, the �js form a set of N different unimodular

complex numbers that can be seen as the roots of the poly-

nomial equation

PðzÞ ¼
QN

j¼1

ðz� �jÞ ¼ zN þ a1zN�1 þ a2zN�2 þ . . .þ aN ¼ 0;

ð3Þ

whose coefficients aj are related to the roots �j by the relations

aj ¼ ð�1Þj
P

1�l1<l2<...<lj�N

�l1
�l2

. . . �lj
; j ¼ 1; . . . ;N; ð4Þ

and are therefore independent of the ẐZjs. If we know the

coefficients aj, the �js can simply be obtained by solving

equation (3), which will be called the resolvent equation. Ott

showed how to determine the ajs from an appropriate set of

Fhs using a suggestion of Carathéodory (1911). In fact, he

observed that the condition Pð�jÞ ¼ 0 can be written as

�N
j ¼ �aN � aN�1�j � aN�2�

2
j � . . .� a1�

N�1
j ð5Þ

and, after multiplying it by �p
j with p integer, as

�Nþp
j ¼ �aN�

p
j � aN�1�

pþ1
j � aN�2�

pþ2
j � . . .� a1�

pþN�1
j ;

j ¼ 1; 2; . . . ;N; p ¼ 0;�1;�2; . . . ð6Þ

The substitution of these equalities in the FNþp expression (1)

gives

FNþp ¼ �aNFp � aN�1Fpþ1 � aN�2Fpþ2 � . . .� a1FpþN�1;

p ¼ 0;�1;�2; . . . ð7Þ

By letting p range over the set of values

½ð�N þ 1Þ; ð�N þ 2Þ; . . . ; 0�, one obtains the system of linear

equations

a1F0 þ a2F�1 þ a3F�2 þ . . .þ aNF�Nþ1 ¼ �F1

a1F1 þ a2F0 þ a3F�1 þ . . .þ aNF�Nþ2 ¼ �F2

..

. ..
.

a1FN�1 þ a2FN�2 þ a3FN�3 þ . . .þ aNF0 ¼ �FN;

ð8Þ

having the coefficients of the resolvent equation (3) as its

solution. One concludes that the knowledge of the ‘first’

ðN þ 1Þ s.f.s F0;F1; . . . ;FN (the reason why we do not consider

the s.f.s relevant to the negative reflections will become clear

in a moment) determines: the coefficients a1; . . . ; aN of the

resolvent equation by solving equations (8); the �js by solving

the resulting resolvent equation; and, finally, the ẐZjs by solving

the linear equation system
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PN

j¼1

ẐZj ¼ F0

PN

j¼1

ẐZj�j ¼ F1

..

.
¼ ..

.

PN

j¼1

ẐZj�
N�1
j ¼ FN�1:

ð9Þ

Four important consequences of this result are worth stressing.

Equation (7) implies that: (i) each FNþm, with m � 0, is a linear

combination of its N preceding s.f.s; (ii) the coefficients of the

linear combination are independent of m and are simply

related to those of the resolvent equation; (iii) each FNþm with

m � 0 can also be expressed as a linear combination of the

‘first’ N s.f.s (i.e. F0;F1; . . . ; FN�1) and the coefficients

involved in this new linear combination depend on a1; . . . ; aN

in a way determined by the value of m.2 This amounts to saying

that all the s.f.s FNþm with m � 0 can recursively be deter-

mined from F0;F1; . . . ;FN�1. Moreover, the s.f.s associated

with negative reflections are known in terms of those asso-

ciated with positive reflections thanks to the Friedel property

F�m ¼
�FmFm, where the overbar denotes the complex conjugate.

One concludes that (iv) all the s.f.s relevant to the reflections

lying on the chosen crystallographic axis are known linear

combinations of F0;F1; . . . ;FN�1.
3 Thus, these are the basic

s.f.s, in the sense that the diffraction pattern along the

considered crystallographic axis is determined and can be

reconstructed from its portion related to reflections

0; 1; . . . ; ðN � 1Þ and to reflection N. The reason why one has

to include the last reflection follows from equation (8). In fact,

this system is determined if all the s.f.s F0; F1; . . . ;FN are

known because these determine the remaining F�ms by the

Friedel relation. In conclusion, the knowledge of the first

ðN þ 1Þ s.f.s fully solves the problem of reconstructing the one-

dimensional structure of the crystal under analysis because it

determines the basic coefficients a1; . . . ; aN defining the

resolvent equation, all the atomic positions xj by the resolvent

equation and, finally, all the ẐZjs by system (9).

These results show the power and the elegance of Ott’s

algebraic method although the involved mathematical analysis

is far from being complete for two reasons. First, the s.f.s are

not the experimentally known quantities. Second, the one-

dimensionality assumption must be removed. The restrictive-

ness of this assumption is made evident by the remark that the

number of different x projections of the spatial configuration

of the N atoms, present in the unit cell, generally is not equal

to N, although it cannot exceed this value. Hence, it is an

unknown integer that must be determined by the solution

procedure. This important point will be analysed in the

following sections. We conclude this subsection by completing

the presentation of the algebraic approach along Ott’s line.

In fact, we shall now discuss how Avrami (1938) generalized

Ott’s approach so that this involves observable quantities

instead of s.f.s and becomes a mathematical algorithm. Based

partly on a paper by Patterson (1935), Avrami worked out

from the experimentally known Ihs other quantities that have

the algebraic form of a s.f. To this aim, starting from the Ih’s

definition, one writes

Ih ¼ jFhj
2
¼
PN

j¼1

ẐZ2
j þ

P

1�j6¼k�N

ẐZjẐZk exp½i2�h � ðrj � rkÞ� ð10Þ

and, after setting

Ih � Ih �
PN

j¼1

ẐZ j
2; ð11Þ

one can say that the Ihs are known quantities since they are

obtained by subtracting the known term
PN

j¼1 ẐZ
2
j from the

observable Ihs. Denoting by l the pair of index values ð j; kÞ

with j 6¼ k, one puts Rl � rj � rk and fl � ẐZjẐZk, and from (10)

and (11) one finds that

Ih ¼
PNðN�1Þ

l¼1

fl expði2�h � RlÞ: ð12Þ

In this way, the algebraic structure of ‘observable’ I hs is

similar to that of s.f.s and – as Avrami first found out – Ott’s

procedure can be applied to them in order to determine the

Rls and the fls. Strictly speaking, the defined Ihs cannot

however be considered s.f.s because some of the involved Rjs

do not lie within the unit cell. Hence, in order to write I h as a

s.f. one must proceed as follows. Each vector ðrj � rkÞ is

brought within the unit cell by adding to it a vector mj;k with

components equal to 0 or �1, so that each component of the

vector d, defined as

d ¼ rj � rk þmj;k; ð13Þ

is non-negative and smaller than one. As ð j; kÞ runs over its

NðN � 1Þ values, we label by |̂| the different ds defined by (13)

and we denote by N 0 the number of different d|̂|s. Moreover,

we denote by L|̂| the set of pairs ð j; kÞ such that ðrj � rkÞ

defines the same d|̂| after applying (13). Then, the second sum

on the right-hand side (r.h.s.) of (10) becomes

PN 0

|̂|¼1

expði2�h � d|̂|Þ
P

ðj;kÞ2L|̂|

ẐZjẐZk: ð14Þ

After setting
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2 This property is immediately proven by recursion. The property is true for
FN . Consider the next s.f. FNþ1. Owing to (7), FNþ1 is a linear combination of
F1;F2; . . . ;FN�1;FN and it becomes a linear combination of F0;F1; . . . ;FN�1

using the linear dependence of FN in terms of F0;F1; . . . ;FN�1. The
coefficients of the final combination will depend on those present in (7) and
on those that relate FN to F0;F1; . . . ;FN�1 and will therefore depend on
a1; . . . ; aN in a way determined by m (equal to 1 in this case). In this way, step
by step, one determines the linear expression of any FNþm, with m> 0, in terms
of F0;F1; . . . ;FN�1.
3 In this respect, it is not useless to observe that, after setting p ¼ �m in
equation (7), this can be written as F�m ¼ ½�aN�1F�mþ1 � aN�2F�mþ2 �

. . .� a1F�mþN�1 � F�mþN �=aN . Owing to the fact that aN 6¼ 0, one concludes
that the s.f. relevant to a negative reflection is a linear combination of its next
N s.f.s. By recurrence, similarly to what we did before, one shows that F�m is a
linear combination of F0;F1; . . . ;FN�1. Combining this relation with the
Friedel relation, one finds that coefficients aj must obey a set of constraints,
not unexpected because resolvent equation (3) must be such that its roots are
all distinct and unimodular.



�|̂| �
P

ðj;kÞ2L|̂|

ẐZjẐZk; |̂| ¼ 1; 2; . . . ;N 0; ð15Þ

equation (12) becomes

I h ¼
PN

|̂|¼1

�|̂| expði2�h � d|̂|Þ; ð16Þ

whereN is the number of �|̂|s different from zero. It is stressed

that these formulae apply in both X-ray and neutron scat-

tering. In the second case, some of the �|̂|s can be negative and

N can be smaller than N 0 because the negativeness of some

ẐZjs can make some of the �|̂|s, defined by (15), equal to zero.

[In the last case, it is assumed that index |̂| is assigned in such a

way that �|̂| ¼ 0 if |̂| ¼ ðN þ 1Þ; . . . ;N 0.] Moreover, equation

(16) shows that the ‘subtracted’ peak intensities I h, defined by

equation (11), are the Fourier transforms of the scattering

density relevant to the infinitely resolved Patterson (1939)

map

�PatðrÞ ¼
PN

|̂|¼1

�|̂|�ðr� d|̂|Þ; ð17Þ

corresponding to a set of N scattering centres located at

d1; . . . ; d
N

with ‘charges’ �1; . . . ; �
N

. This scattering density

generally is not a positive density in the case of neutron

scattering owing to the possible negativeness of some �|̂|s. Even

though each subtracted intensity is mathematically well

represented by both (12) and (16), only the second has the

algebraic expression of a s.f. Hence, the algebraic approach by

Ott must be applied using algebraic expression (16) for

subtracted intensities with the consequence that we do not

know the value of N , i.e. the number of terms involved in the

sum defining a s.f., as well as the values of the charges �|̂|. [Note

thatN and the �|̂|s would have been known whenever we were

allowed to use (12)]. Besides this complication, the remaining

difficulty in the application of the Ott–Avrami approach

consists in removing the one-dimensionality assumption. This

will be done in the following sections. In closing this subsec-

tion, we stress that the application of the algebraic approach to

the I hs only determinesN , the djs and the �|̂|s or, equivalently,

the quantities defining the density of the infinitely resolved

Patterson map (17). The determination of the atomic positions

requires the subsequent deconvolution of this map, i.e. to solve

equations (13) and (15). In principle this can be done by a

finite number of mathematical operations (see e.g. Appendix

E of I). In this way, all the atomic configurations that repro-

duce the observed diffraction pattern are determined.

2.2. Vectorial space formulation

In the early fifties, an important series of papers pointed out

the existence of inequality relations among the s.f.s relevant to

different reflections (Harker & Kaspar, 1948; Karle &

Hauptman, 1950; Sayre, 1952; Hauptman & Karle, 1952). In

most cases, these relations were obtained by exploiting the

positiveness of the scattering density since the authors expli-

citly analysed the case of X-ray scattering. Goedkoop (1950),

investigating in more detail the inequalities obtained by Karle

& Hauptman (1950), introduced a vector-space formalism

very useful to reformulate the phase problem for the X-ray

scattering from a crystal. Now we show how Ott’s formulation

can be obtained by the vectorial space formalism. Following

Goedkoop, if the crystal contains N atoms in its unit cell, one

considers an N-dimensional Hilbert space, denoted by HðNÞ,

and one associates with each reflection h of Z3 a vector of

HðNÞ, denoted by jhi and defined as follows4

jhi �
PN

j¼1

ẐZ
1=2
j expði2�h � rjÞjeji: ð18Þ

The set of vectors jhi, with h 2 Z3, forms a lattice of vectors,

denoted as GðNÞ and referred to as Goedkoop’s lattice.

Because heijeji ¼ �i;j,
4 one immediately verifies that

hkjhi ¼
PN

i;j¼1

ẐZ
1=2
i expði2�k � riÞẐZ

1=2
j expði2�h � rjÞheijeji

¼
PN

i¼1

ẐZi exp½i2�ðh� kÞ � ri�

¼ Fh�k: ð19Þ

Equation (19) shows that the set of scalar products of any pair

of vectors of GðNÞ coincides with the set of s.f. values. It is now

remarked that the algebraic manipulations reported in equa-

tion (19) are correct only if all the ẐZjs are positive so that

definition (18) only works in the case of X-ray scattering. The

geometrical structures of HðNÞ and GðNÞ reflect into a series

of relations that must be obeyed by the s.f.s. These relations

were mainly used to reduce the phase ambiguities of the s.f.s,

the latter moduli being experimentally known (Castellano et

al., 1973; de Rango et al., 1974; Podjarny et al., 1976; Knossow

et al., 1977; Navaza & Silva, 1979; Rothbauer, 1970, 1974, 1980;

Silva & Navaza, 1981; Podjarny, 1981).5

However, as was first found by Navaza & Silva, they also

allow us to recover the results of Ott described in the previous

subsection. To show this point, it is first observed that GðN Þ is

a subset of HðNÞ and it exactly contains N linearly indepen-

dent vectors (see Appendix A of I). Consider now the vectors

of GðNÞ associated with a set of M reflections BM �

fh1; . . . ; hMg and denote by (DM) the M 
M matrix whose

ði; jÞ element is DM;i;j ¼ hhijhji ¼ Fhj�hi
. The matrix ðDMÞ is

known as the Karle–Hauptman (KH) matrix generated by the

vectors jh1i; . . . ; jhMi or by the reflection set BM .6 The posi-

tivity of the metric of the Hilbert space implies that

detðDMÞ � 0 and, more precisely, that the vectors
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4 We find it convenient to adopt here the quantum-mechanical notation j�i and
h�j�i for vectors and scalar products. Moreover, the jejis with j ¼ 1; . . . ;N
define an orthonormal complete basis of HðNÞ in the sense that heijeji ¼ �i;j

(�i;j being Kronecker’s symbol) and that each vector jvi of HðNÞ can be
written as jvi ¼

PN
j¼1 vjjeji with vj ¼ hejjvi.

5 Navaza & Silva and Rothbauer also exploited, along the line first considered
by Goedkoop on the basis of Bertaut’s (1958) results, the constraints arising
from possible crystallographic symmetries that generally lead to a resolvent
equation of lower degree.
6 A KH matrix has the property of remaining invariant if it is evaluated using
the vectors associated with the set of reflections h1 þ p; h2 þ p; . . . ; hM þ p
obtained by translating the set BM by an arbitrary reflection p. This property
will be referred to as the translation invariance of ðDÞ and will be very useful
later.



jh1i; . . . ; jhMi are linearly independent if detðDMÞ 6¼ 0 and

linearly dependent if detðDMÞ ¼ 0. By extension, in the two

cases, reflections h1; . . . ; hM will be said to be linearly inde-

pendent and dependent, respectively. Assume that

detðDMÞ ¼ 0 and that the rank of DM be M � 1. Then, jhMi

can be written as

jhMi ¼
PM�1

j¼1

�hM;j
jhji ð20Þ

and the �hM ;j
s are the solutions of the system of linear equa-

tions

FhM�hi
¼
PM�1

j¼1

�hM ;j
Fhj�hi

¼
PM�1

j¼1

DM�1;i;j�hM ;j
; i ¼ 1; . . . ;M � 1;

ð21Þ

resulting from the scalar products of (20) with

jh1i; . . . ; jhM�1i, while, on the r.h.s. of (21), DM�1;i;j denotes

the ði; jÞth element of ðDM�1Þ, the principal minor of (DM)

obtained by discarding the last row and the rightmost column

of ðDMÞ. The solution of (21) is

�i ¼
PM�1

j¼1

D
�1
M�1;i;jFhM�hj

; i ¼ 1; . . . ;M � 1: ð22Þ

If we translate the previous set BM by an arbitrary reflection p,

we obtain the new set of linearly dependent reflections

BM;p � fh1 þ p; . . . ; hM þ pg owing to the property reported

in footnote 5. Then, equation (20) becomes

jhM þ pi ¼
PM�1

j¼1

�hM;j
jhj þ pi: ð23Þ

The scalar product of equation (20) by jhM þ ki, k being an

arbitrary reflection, yields

Fk ¼
PM�1

j¼1

�hM ;j
Fk�ðhM�hjÞ

: ð24Þ

Finally, the scalar product of (20) by jesi, the orthonormality of

the jejis and (18) give

expði2�hM � rsÞ �
PM�1

j¼1

�hM;j
expði2�hj � rsÞ ¼ 0;

s ¼ 1; 2; . . . ;N: ð25Þ

Putting

�s � expði2�xsÞ; �s � expði2�ysÞ; �s � expði2�zsÞ;

s ¼ 1; . . . ;N; ð26Þ

and denoting the ath component of hm by hm;a (with

a ¼ 1; 2; 3), equation (25) becomes

�s
hM;1�s

hM;2�s
hM;3 �

PM�1

j¼1

�hM;j
�

hj;1
s �

hj;2
s �

hj;3
s ¼ 0; s ¼ 1; . . . ;N:

ð27Þ

Equation (27) shows that the ð�s; �s; �sÞs must be chosen

among the roots of the following polynomial equation

Pðx; y; zÞ � xhM;1 yhM;2 zhM;3 �
PM�1

j¼1

�hM;j
xhj;1 yhj;2 zhj;3 ¼ 0; ð28Þ

involving now three variables and determined by the same �js

that are present in (20) and (22) and are determined by the

linearly dependent reflection set BM. We already stressed that

GðNÞ contains N linearly independent vectors. Assuming we

know a set of such vectors denoted by jh1i; . . . ; jhNi, the set

BN � fh1; . . . ; hNg of the associated reflections is a set of N

linearly independent reflections. Then any set BNþ1 obtained

by ‘enlarging’ BN to contain a further reflection hNþ1 different

from h1; . . . ; hN is a set of linearly dependent reflections.

Hence, equations(20)–(28) hold true with M ¼ ðN þ 1Þ. These

equations represent a partial generalization of the results

reported in items (i)–(iii) of x2.1. In fact, equation (24) shows

that, once a KH matrix with determinant equal to zero has

been found, each s.f. can be expressed as a linear combination,

with fixed coefficients, of ðM � 1Þ s.f.s related, as specified on

the r.h.s. of equation (24), to the reflections that generate the

singular KH matrix. This property generalizes items (i) and (ii)

to the three-dimensional case. At the same time, from equa-

tion (20) with M ¼ N þ 1, it follows that

jhi ¼
PN

j¼1

�h;jjhji ð29Þ

and

Fh ¼
PN

j¼1

�h;jFhj
: ð30Þ

The above equation implies that each s.f. Fh is a linear

combination, with coefficients dependent on h, of N fixed s.f.s.

This property is the three-dimensional generalization of the

first part of item (iii). In conclusion, equations (20)–(30), first

obtained by Navaza & Silva (1979) within the vectorial

formalism approach, generalize most of Ott’s results to the

three-dimensional case, since they coincide with equations (3),

(7) and (8) when one restricts oneself to the one-dimensional

case. It is however underlined that, while properties (i), (ii)

and the first part of (iii) have been generalized to the three-

dimensional case, nothing has been said about the second part

of (iii) and property (iv), i.e. the reconstruction of the full

diffraction pattern from a finite portion of it. At the same time,

no statement was made in the three-dimensional case about

the roots of the system of polynomial equations of the kind

(28) that emerges by considering different and non-super-

posable sets of linearly dependent reflections. The two ques-

tions are intimately related. In fact, if we are able to

reconstruct the full diffraction pattern from a portion of it,

then we can determine all the s.f.s and, by these, the scattering

density of the unit cell through the relation

�
cell
ðrÞ ¼

P

h2cZ3

Fh expð�i2�h � rÞ ¼
PN

j¼1

Zj�ðr� rjÞ:

In this way, all the scattering centre positions will be uniquely

determined and it will be possible to get a system of poly-

nomial equations of the kind (28) having the atomic positions

research papers

498 Cervellino and Ciccariello 	 Algebraic approach to the phase problem Acta Cryst. (2005). A61, 494–500



as unique roots. Hence, the two questions: how to choose a

finite portion of the diffraction pattern that allows us to

reconstruct the full pattern and how to single out a set of

polynomial equations having as unique root the set of atomic

positions? These two questions were not answered by Navaza

& Silva (1979), Navaza & Navaza (1992) or Rothbauer (1998)

in his more recent polynomial approach to solve the phase

problem for a crystal with point-like atoms.7

So far, we have considered the case of X-ray scattering. The

extension of these results to the case of neutron scattering is

possible proceeding along the line considered by Navaza &

Navaza (1992) and Rothbauer (1998). Very briefly, one

introduces now two Goedkoop lattices, denoted by GuðNÞ and

GwðNÞ, and respectively formed by the vectors

jhui �
PN

j¼1

expði2�h � rjÞjeji; jhwi �
PN

j¼1

Zj expði2�h � rjÞjeji

with h 2 Z3: ð31Þ

Again, each of these vector lattices contains N linearly inde-

pendent vectors and each s.f. is now equal to the scalar product

of a vector of GuðNÞ and a vector of GwðNÞ since

hkwjhui ¼
PN

j¼1

Z j exp½i2�ðh� kÞ � rj� ¼ Fh�k: ð32Þ

Also in this case a set BM � fh1; . . . ; hMg of reflections

determines an M 
M KH matrix ðDMÞ with its ði; jÞth element

equal to hhw;ijhu;ji ¼ Fhj�ki
. But, in this case, the possible

negativeness of some Z js implies that the property

detðDMÞ � 0 no longer applies. Consequently, in contrast to

the case of X-ray scattering, if one finds that detðDMÞ ¼ 0 one

can no longer conclude that the vectors associated with the

reflections of BM are linearly dependent. These considerations

show that, in the case of neutron scattering, the vanishing of

the determinant of a KH matrix is not as predictive as in the

case of X-ray scattering.

This rather detailed review of the algebraic approach shows

that four difficulties must still be overcome before one can

state that the atomicity assumption removes the phase

problem in the case of ideal crystals. The difficulties are the

following. (a) To work with the subtracted intensities defined

by (16) and this implies that, beside the djs, N and the �js are

further unknowns to be determined. (b) To devise a procedure

that isolates a finite set of reflections such that the full

diffraction pattern can be reconstructed from it or, equiva-

lently, that the knowledge of this finite set allows us to get a

system of polynomial equations that has no spurious roots. For

this reason, the reflections of this portion of the full pattern

will be said to form a complete set of reflections. (c) To find a

complete set of reflections lying as close as possible to the

origin (in this way it will be possible to say whether the

considered limiting sphere is large enough to solve the crys-

tal’s structure). (d) The previous difficulties must be removed

in cases of both X-ray and neutron scattering.

3. Results and conclusion

The procedure to be followed in order to remove the noted

difficulties (a)–(d) is detailed in the first two sections of the

deposited data. Actually, the procedure allows us to say

whether the observed limiting sphere is large enough to

contain a complete set of reflections and, in the affirmative

case, to obtain from the relevant subtracted intensities an

infinite resolved Patterson map, i.e. the values of N , the djs

and the �js that represents the maximum information content

of a diffraction pattern. Clearly, this result is based on the

assumption that the atoms are treated as point-like objects.

Therefore, the statement that the atomicity assumption

removes any ambiguity in the phase problem for an ideal

crystal for both X-ray and neutron scattering is now fully

proven. To avoid any confusion, we stress that the aforesaid

conclusion has been reached on a purely theoretical basis. In

practice, of course, it is not new because many structures have

been solved, using X-ray and neutron scattering data [for the

latter see Hauptman (1976) and Hauptman & Langs (2003)]

by direct methods that, still based on analytic expression (1)

for the s.f.s, use probabilistic considerations and ‘trial-and-

error’ techniques. One naturally wonders whether the alge-

braic approach, theoretically so powerful, might also be of

some practical use. So far, the reported applications concern

crystals containing up to ten atoms within the unit cell (see e.g.

Fischer & Pilz, 1997; Rothbauer, 1998; Pilz & Fischer, 2000).

The small number of atoms is hard to overcome because the

size of the involved ðDÞmatrices increases so quickly with N to

saturate computer capabilities and, at the same time, because

experimental uncertainties on observed intensities tend to

make the algebraic approach mathematically unstable as the

size of ðDÞ increases. Nonetheless, in our opinion, this is a

point still worth investigating. As shown by Cervellino &

Ciccariello (1999) in a one-dimensional application of the

algebraic approach, subtracted noisy intensities roughly

determine N . The same analysis is feasible in three dimen-

sions with experimental intensities forcing N to be smaller

than 100. In fact, this value is well within modern computer

capabilities while the conditionN � 100 tends to increase the

degeneracy of the interatomic vectors that, as N increases,

tend to form clusters. The resulting infinitely resolved

Patterson map must be deconvoluted in terms of 20–50 point-

like clusters of atoms that are known to occur. (Since each

cluster can contain a large number of atoms in this way, the

number of atoms of the unit cell is no longer confined to be

small.) This point is the crucial one that needs further inves-

tigation.
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